Use of Recovered Zinc Oxide (Zno) from Depleted Alkaline Batteries in the Formulation of Bioactive Paints

Authors

  • Guillermo P. López Centro de Investigación y Desarrollo en Tecnología de Pinturas - CIDEPINT CIC-CONICET-UNLP
  • María V. Gallegos Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. Jorge J. Ronco” CIC-CONICET-UNLP
  • Natalia Bellotti Centro de Investigación y Desarrollo en Tecnología de Pinturas - CIDEPINT CIC-CONICET-UNLP https://orcid.org/0000-0002-5317-689X

Keywords:

Recycling, batteries, Zinc oxide, Paints, Fungicides

Abstract

Functional paints with antimicrobial activity are aimed at controlling biofilm growth in indoor environments, especially hospitals and homes. From an economic point of view, paints represent the most convenient means of protecting structural materials. These paints are formulated with the addition of additives with antimicrobial activity, among these, antifungal agents are extremely important in the prevention of biodeterioration and the hygienic control of the environment. The use of bioactive nanoparticles is promising due to their properties and the functionalities that they can impart in dispersed systems such as paints. Dead batteries are hazardous waste, due to the presence of heavy metals. The anode of alkaline batteries is made up of a mixture of ZnO and Zn (OH) 2 that can be used in the synthesis of ZnO. The present work evaluates the use of ZnO nanoparticles obtained from battery recycling in the development of paints resistant to fungal growth

Downloads

Download data is not yet available.

Author Biography

María V. Gallegos, Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. Jorge J. Ronco” CIC-CONICET-UNLP

 

 

References

Ahmed S., Annu, Chaudhry SA., Ikrama S., 2017. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry Journal of Photochemistry & Photobiology, B: Biology. 166, 272-284. doi:10.1016/j. jphotobiol.2016.12.011

Barberia-Roque, L., Gámez-Espinosa, E., Viera, M., Bellotti, N., 2019. Assessment of three plant extracts to obtain silver nanoparticles as alternative additives to control biodeterioration of coatings. International Biodeterioration & Biodegradation. 141, 52-61 https:// doi.org/10.1016/j.ibiod.2018.06.011.

Bellotti N., Romagnoli R., Quintero C., DomínguezWong C., Ruiz F., Deyá C., 2015. Nanoparticles as antifungal additives for indoor water borne paints, Progress in Organic Coatings. 86, 33-40. doi:10.1016/j. porgcoat.2015.03.006.

Brayner R., Ferrari-Iliou R., Brivois N., Djediat S., Benedetti M.F., Fie´vet F., Nano Lett. 6(4), 866–870 (2006). doi:10.1021/nl052326h

Da Silva BL., Caetano BL., Chiari-Andréo BG., Rodrigues Pietro RCL., Leila Aparecida Chiavaccia LA.,Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces. 177(2019)440-447. Doi:10.1016/j. colsurfb.2019.02.013

Deyá D. y Bellotti N., 2017. Biosynthesized silver nanoparticles to control fungal infections in indoor environments, Adv. Nat. Sci. Nanosci. Nanotechnol. 8,025005. doi:10.1088/2043-6254/aa6880.

Dutra A., Paiva P., Tavares M. Miner. Eng. 19 (2006) 478–485

Gallegos M.V., Aparicio F., Peluso M.A., Damonte L.C., Sambeth J.E., 2018. Structural, optical and photocatalytic properties of zinc oxides obtained from spent alkaline batteries, Materials Research Bulletin. 103, 158-165. https://doi.org/10.1016/j.materresbull.2018.03.022

Jalal R., Goharshadi E.K., Abareshi M., Moosavi M., Yousefi A., Nancarrow P. Mater. Chem. Phys.121(1), 198– 201 (2010). doi:10.1016/j.matchemphys.2010.01.020

Jones N., Ray B., Ranjit KT., Manna AC., FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:10.1111/j.1574- 6968.2007.01012.x

Lewis G., Gaydardzhiev S., Bastin O. Miner. Eng. 24 (2011) 1166-1171)

Ogunsona EO., Muthuraj R., Ojogbo E., Valerio O., Mekonnen TH., 2020. Engineered nanomaterials for antimicrobial applications: A review. Applied Materials Today. 18,100473. doi:10.1016/j.apmt.2019.100473

Seil JT., Webster TJ., Int. J. Nanomed. 7, 2767–2781 (2012). doi:10.2147/IJN.S24805).

Sirelkhatim A., Mahmud S., Seeni A., Kaus NHM., Ann LC., Bakhori SKM., Hasan H., Mohamad D., 2015. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters. 7, 219-242. doi: 10.1007/s40820-015-0040-x

Yebra DM., Weinell, CE., Key issues in the formulation of marine antifouling paints. En: Advances in marine antifouling coatings and technologies Hellio and D. Yebra (ed.). Woodhead Publishing Limited. CRC. UK. p. 308-333, 2009.

Zhang L., Ding Y., Povey M., York D., 2008. ZnO nanofluids

A potential antibacterial agent. Progress in Natural Science. 18, 939-944. doi:10.1016/j.pnsc.2008.01.026 Zhong Lin Wang J. Phys.: Condens. Matter 16 (2004).

Published

20-06-2021 — Updated on 27-07-2021

Versions

How to Cite

P. López, G., Gallegos, M. V. ., & Bellotti, N. . (2021). Use of Recovered Zinc Oxide (Zno) from Depleted Alkaline Batteries in the Formulation of Bioactive Paints. Ambiente En Diálogo, (2), e025. Retrieved from http://ojs.opds.gba.gov.ar/index.php/aed/article/view/25 (Original work published June 20, 2021)